

Analysis of Polynomial Functions				
Duration			2.5 weeks	Assessed
Priority Standard(s)	A2.REI.A.1	Solve polynomial inequalities using sign analysis.		
	A2.IF.A.1	interpreting graphs of polynomials - intervals of concavity, points of inflection, relative and absolute extrema		
	A2.APR.A.2	Use synthetic division to find the roots of a polynomial function		
Supporting Standard(s)	A1.SSE.A.2 A2.APR.A.1			
	Factor polynomials.	Analyze the structure of polynomials to create equivalent expressions or equations.		
	A2.APR.A.4	Identify zeros of polynomials when suitable factorizations are available and use the zeros to sketch the function defined by the polynomial		

Unit 8		
Intro to Trig: Right Triangle and Unit Circle Trigonometry		
Duration	2 weeks	Assessed
Priority Standard(s)	Understand and apply the three basic trigonometric ratios to solve triangles and application problems.	
	Learn the terminology associated with circular trigonometry including circular angle, co-terminal angle, reference angle and radian angle measure	
	Finalize the unit circle and redefine and apply the six basic circular trigonometric ratios to find values of angles, or co-terminal with angles, on the unit circle.	
Supporting Standard(s)	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles.	

Unit 10			
Trigonometric Identities and Equations			
Duration	3 weeks	Assessed	
		Use reciprocal, quotient, negative, and pythagorean identities to verify a given equation was an identity.	
		Use sum and difference, double angle, and half angle identities to evaluate trig functions.	
	Solve trigonometric equations.		
Supporting Standard(s)	Apply unit circle values.		

Unit 12			
Parametric and Polar Equations			
Duration	2-4 weeks		Assessed
Priority Standard(s)		Given a parametric function, graph by plotting points; eliminate the parameter	
		Convert between parametric/polar and rectangular equations. (eliminate the parameter)	
		Solve parametric/polar equations.	
		Plot points using polar coordinates and convert from polar to rectangular coordinates.	
		Apply parametric/polar equations to real life situations modeling projectile motion.	
		Graph polar equations by plotting points and categorize polar graphs.	
Supporting Standard(s)		Solving various level equations for a given variable.	
		Know and use the 6 basic trig function values to simplify expressions.	

